LIFE RESKIBOOT

MID-TERM SECTORIAL TECHNICAL WORKSHOP

Ski boot assembly, characterization and testing

DALBELLO

TIMING

TIMETABLE

	Action		2020			2021				2022			2023			2		:02	024	
Action numbe	Name of the action	ı	п	Ш	IV	ı	ш	ш	ıv	1	11 11	ııv	1	П	Ш	IV	1 1	1 11	I	
A. Pre	paratory actions (if needed)													_	Т				_	
B. Imp	lementation actions (obligatory)																			
	Recovery of post-consumer ski boots and sorting to turn them into secondary raw materials that will be characterized in comparison to virgin ones																			
B.2	Design for recycling																\Box	\top		
B.3	Production process optimization and component manufacturing with secondary raw materials																		\prod	
B.4	Ski boot assembly, characterization and testing																	Т		
B.5	Replication and business planning																	Т		
C. Mon	itoring of the impact of the project actions (obligatory)																			
	Evaluation and monitoring of environmental and circularity impacts and benefits			•		•	-							-				T	П	
C.2	Monitoring using Life Programme Webtool																	Т		
D. Pub	lic awareness and dissemination of results (obligatory)																			
D.1	Dissemination and Communication																	\top		
E. Proj	ect management (obligatory)																			
E.1	Project Management																	\perp		

KEY RESULTS FOR THE PERIOD

Main results	Completion
First ski boot sample assembly	100%
Lab test and on snow test on sample ski boots	90%
Ski boot production	On-going

First ski boot sample assembly

- The first assembled ski boot uses the liner and the injected parts made with recycled materials.
- The only parts that are not made from recycled material are the buckles because the aluminum needs to be pure to be processed
- For the 1000 pairs only obsolete buckles will be used (leftovers from old productions).
- All the parts are replaceable \rightarrow all the rivets have been replaced by screws.

Lab test and on snow test on sample ski boots

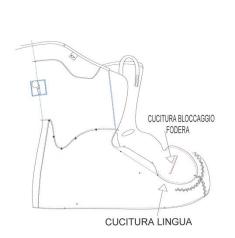
Every ski boot must withstand the following test before approval for production:

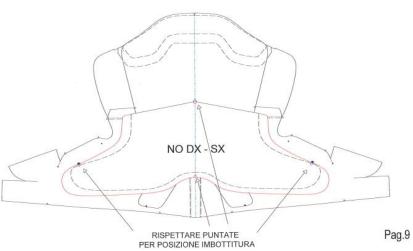
- Release test: the test aim is to find the torque needed to release the ski boot from a binding. There is a range of value that the boot must respect to be within the ISO norm.
- Impact tower test: this test simulates a fast and heavy load on the ski boot, like a skier falling from a jump. The ski boot must withstand an incremental series of loads released at increasing speed.
- Walkmeter: simulates the skiing life of the boot, it's possible to recreate 1
 year of intense use in just 1 day. It's useful to determine the structural
 integrity of the ski boot after a long-term usage.

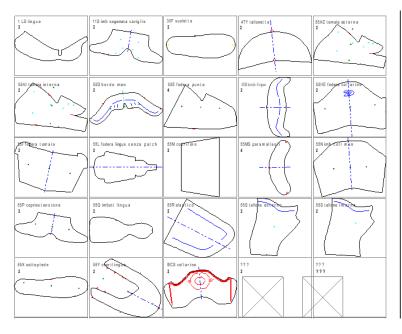
Ski boot production

- Creation of Boms for liner and skiboot
- Creation of technical construction sheet
- Creation of tools and files such as procedures/instructions for production of the 1000 pa

DALBELLO		SCH	IEDA	АТТ	rez	ZAG	GIO (v	ertica	ıli)		05	11	09.0		
COD. STAMPO	18:	59	Dt	SCRIZIO	INE (20	DS	MX				TAGLIA	275		
PESO SENZA	MATT	0			SENZA P	The	-		PESC	SENZA MA	ar				
1° PESO MATTARO 1			2	PESC	SATTAN C	0.1		TO	PESC	MATTARO	ZZA				
	PESO MATTARO 2		188		COMPLE				peg	COMPLETO	0				
* INTEXIONE	HAU Z			Trees.					Para	111271		10000000			
ATERIALE 1	1 4 3 ()	-	% MATE	RIALE 2			%	1	100						
	100			HTORE			%	COD, MAST	BK H	200		ESSIGNZION			
ORNITORE	Rim	acimi			05255			COLORE	9	120		40	5		
OTTO EMPERATURE CILI			% LOTT	0	0.00	*c	%	14	*0	7.0		_ 0	2		
EMPERATURE CLD	<2	0	275	2	8	215	7.			H					
TEMPO CI	CLO		CONF	DIZIONA	MENTO S	TAMPO		GOCCIA	FREDO	A SII	LICONATI	IRA			
0.5		0	GISCIO		0	FORM	ir.	s 29 1	90 E						
40	sec	TENNIONES.	7		TTEMORES	· ·		Pepe / berpo		St I	D NO	叉			
NIEZIONE		TOT TOTAL	-	VI	VZ	V3	V4	V5	V 6	¥7.	V8	V 9	V 10		
MIEZIONE			CTTA: 56	41	112	4.5	- 77	*2	*0			.,,	6.10		
				SO	-	-		-				-			
RESSIONI INIEZI		COMPATAZIONE	VITE IND	15		_		-	_	-	RESSION	_	_		
RESSIONI INTEZD	UNE				MENTO										
			P1	P 2	P3	P.4	PS		P1	9.2	P.3	P4	P.5		
		bar	KB					ber	45						
		2000	15					sec	20						
	TEMPI				co	RSE				TR	AFILA				
file	mpimento se	8			Dosnggio	0.00	95	1º veloc Rotaz Vite gross CO							
Post-	pressione un	20			Risucchio	2 700	1,	20.0	veloc. Pote	a. Vite	glows	- 10			
		Comm. Pos			-	1°Contropressione tor / <									
Totale Inlesione suc 2					ion minimo				Contropre	_1					
			-	Code	an en ven	2 2000		-	COLD HAVE		bor				
нати	ddamento se	-2						-	_		RTURA				
			IUSURA	1	4	_			0			1 10	~		
	1º KI			Der 1	50	mm		To NW	200		50		2		
	2° 80	40		bor /	50	1919		2º K.6s	40	ow /	50	on /5	0		
	3° K0	3	3	ber /	150	0900		3o K.0	35	Der /	400	m 2 80			
Alta	pressione mm	100		1				Capert	210	an 3.	10				
Press	elv.stampi <i>min</i>	10	n +	00'	V2	500	CIA X	10000	-		1				
	nomento mm	21.44	~		_			10							
	emgo ciclo se	90			100	401	-bie	2							
TEMPERATURE CAN		1		T1	T2	Т3	T4	T5	T.6	T7	TB	Τ9	T 10		
			~		1.4	1.5	1.4			1	1				
CONDIZIONAMENT	O STAMPE	MATRICOS		Ti	T2	Т3	T4	TS	T 6	T.7	T8	Т9	T 10		
	-	P#47300209	COUNTE 40	1	1		MPAGGIO			-	_	1	-		
	-		100				MPAGGIO olazioni estrazion		diffetti risc		-	tervento da ef	latte ton		
Advezzaggio stampo	Ave	io produzione	res	galazioni sil	occeatura	reg	ouzon estrano	×6	Umes0 / 90	seesau.	- 05	no second da es	erona, g		
301	/G	A.	-	/		Ro	BOT.								
												-			
									6			ST	АМРО		
NOTE	1	1							1			ox VP	мок 🗆		
	707	1					Verificato d	. 7	N	1					


72		SC	HED/	3-	X-OS										
DALBELLO COD. STAMPO	185		-	ESCR1710	-	^ .	-		57	1 \	_	TAGLIA	122		
		4			534	70	SCAT	3 L				IAGLIA	Ct.		
PESO SENZA HA			-		SENZA P			тс		SENZA NA D MATTARO		-			
1* PESO MATTARS PESO MATTARS			- 3		COMPLE			тс		COMPLETE					
	12			PESC	COMPLE	10		1000	PES	COMPLETE	,	-	ON THE REAL PROPERTY.		
* INTEZIONE NATURIALE 1	00		% MAI	ERIALE 2		1000	1%	1	14.7	2 1/3		- 101VA	10015000		
ORNITORE	1 -			NITOKE 2	00000	_	%	COD MAS			1520000	EBBICAZIO	XXE		
OTTO	Rim	Min:	% LOT		70000	-	%		-4	420	-		5		
EMPERATURE CILING	RO		*0	*(°c		'c	*0	**		17	0		
	5	26	275	20	25	270	2	15		H					
TEMPO CICLO)	-	cos	DIZIONA	ENTO S	тамро	7/20/20/20/20/20/20/20/20/20/20/20/20/20/	GOCCI	A FREDD	A SII	ICONAT	URA	-		
DO.		0	GUSCOO		0	FOR			NO [3 ,	75 MO	0			
10	sec	TERMORES.	* *	50	TERROTORE		10	Peso / tempo			- I				
INIEZIONE				V1	V 2	V3	V.4	V.5	V-6	V.7	V.8	V 9	V1		
			OCTA 1		40	30	20								
		OMPUTAZIO	NA STN SI												
PRESSIONI INTEZION	EQ				IMENTO						PRESSIONE				
			P1	P2	P3	P4	PS		P1	P2	P 3	P-4	P		
		be	95		-	-			55	-	-	_	-		
		/00	10			_		sec	10	_	AFILA		_		
	EMP1	75	-			RSE	100		veloc, Rota		ginit	40	-		
Riempinento sec /O Post-pressione sec 25 Totale Injection sec 25				Dosaggio rem /50					2" veloc Rotas, Vite gran						
				Corem. Pos			5	1°Contropressione bar / 5							
	opius oc	30	-		ino minim		10		*Contropre		ber	1	2		
Raffredda		13		-				1							
1000	- AL	+ 2	HIUSURA	-				-		APE	RTURA		-		
	I* KW	40		ber /	0	com		2° 89	25	tor X		em 5	0		
	2° 10%	40		bor /	40	cen		29 856	35	ter / 5		en /	50		
	3° KN	30		ber /	60	core		3° 8.56	49	DOY / 1			50		
Alta pre	ssore mm	10		1				C.sport.	roc		60		,		
Pres.selv.	tens igner	90)	Der 3	0				-		,	70000			
Prozvenze	mento rom	12						1 6							
	o ciclo sec	1	0												
TEMPERATURE CAMER	A CALDA			T1	T2	Т3	T4	TS	T 6	Y.7	T8	T 9.	TI		
CONDIZIONAMENTO	TAMPE			T1	TZ	Т3	T4	TS	Т6	T7	T8	T 9	T.1		
110		ANTRECE	PORME 4		1										
	-	-		-	NOT	E PER ST	AMPAGGIO								
Attrezzaggio stampo	Assis	produsione		egolazioni sili	constura	reg	polazioni estrazio	ne	difetti risc	ontrati	- in	stervento da e	effettuare		
		Min.			0	n -	H	SUR	olice.	ROF.					
30	10			40		1 Ko	BOT.								
,	10					00.3000	V 1		Ace	hi	1. Tucc				
			1	TANU	1/8	10	10'	-	-	2.4	. 7-				
						1		- 4	(60	Piller	400	1			
													ТАМРО		
NOTE	11/							1	111	6		OK P	MOK I		
	NA	- 1	Na			-		. 12	1.1.	1	Ilin	-	-		
Preparato da	1/41	14. 3	HIT'CL	w			Verificato d	to C	AMIL	Ua.	117 (2	1			






Ski boot production

THANK YOU FOR THE ATTENTION!

